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The deformation dependence of the neutron scattering form factor of a labelled chain in a crosslinked melt 
network can be given, if one takes into account interactions between the chains. In order to do this we have 
used the already existing models for which the free energy has been calculated and compared with the 
mechanical experimental measurements. We have calculated the form factor for the standard Flory-Erman 
model, the sliplink model (Ball-Edwards), and the primitive path model. We have also discussed the effect of 
the form factor, for one model of local interactions, on the orientational (nematic field) effect between 
monomers. 
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I N T R O D U C T I O N  

The difficult problem of a detailed understanding of 
rubber elasticity has been made somewhat easier by the 
measurement of the form factor S(~) of the chains inside 
the polymer network (usually by small-angle neutron 
scattering (SANS)). Each step of improvement in the 
technique has brought new information to light. The 
classical models of rubber elasticity, which consider 
crosslinked Gaussian chains with no interaction, are 
those of Kuhn 1, James and Guth 2, Flory 3, Deam and 
Edwards 4. These models allow the calculation of the form 
factor (see next section). Comparison with SANS results 
produces some important discrepancies 5'6, which can be 
added to the many unexplained results for former 
mechanical and orientation studies. One unexplained 
result in the mechanical studies is the deformation 
dependence of the reduced stress, 

f * ( 2 ) = f / O  o2 - 1/2) (1) 

(for the uniaxial case; 2 is the deformation ratio). A 
constant f *  is predicted 

f *  = kT/Mmesh (2) 

(where Mm~h is the molecular weight of the mesh) in the 
classical models t -4, but there is a softening around 2 = 1 
up to 2 = 3 and a more rapid increase for larger 2. We will 
consider here several proposals concerning these two 
features, and simply give the modifications of the form 
factor one should expect, in the expectation that 
comparison with SANS measurements could be made. 
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The decrease around 2 = 1 is often characterized by a 
'second Mooney coefficient' as f *  behaves close to 

f *  = C a + C2/2 (3) 

Two models relate this to the presence of entanglements, 
and the fact that these entanglements have more freedom 
in space when the network is deformed. In subsequent 
sections we will consider the Flory-Erman model where 
the entanglements are assumed to reduce the freedom of 
the real crosslinks only; consider a model where 
entanglements are assumed to act as sliding crosslinks 
(sliplinks); consider an alternative model, related to an 
orientational effect on the monomers of the chain. Also 
discussed is the increase at larger 2 which is attributed to 
the finite extensibility of the chain; we observe its effect on 
the form factor, in particular at the entangled limit. 

F O RM FACTOR FOR THE CLASSICAL MODELS 

Two different types of labelling have been explored in 
SANS experiments, and we must consider both. Both 
start from a mixture of deuterated chains and ordinary 
chains. We wish to measure the form factor of a single 
labelled object, however, the fraction ofdeuterated species 
is low for a rubber containing solvent, but it is possible 
(and gives a higher signal) to make the fraction of 
deuterated species large in a dry rubber. In the first type, 
the chains after mixing are end-linked, and one measures 
the form factor of a single mesh, Sm(k). In the second case, 
the chains are crosslinked (e.g. by radiation) at many 
points for each chain, and one measures the form factor of 
a single labelled path, walking in the network via 
numerous meshes, Sp(k). 5 

We first consider Sin(k), calculated as follows. One first 
calculates the scattering for a couple of points (ij) inside a 
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Gaussian chain of fixed end-to-end distance R, where 

s,Lk;8) 

= f dR-id~fi(R-°'Ri'O'si)G(R-i'Rj'si'sj)G(R-j'R'j-'st'L)e ik-Ig-i- ~J) 

dR~,dR~fi(R_o,R_i,0,s3G(Ri,R_t,si,s~)G(R_t,R.z, st,L) 

(4) 
where 

G(Rx,Rv,s,,,sy) = (3/2his. - s f l )  3/2 

x exp{ - ((3/2[s~ - s,l/)(R~ - R,)2)} (5) 

is the Green function for a random walk of length Is~-srl 
from R~ to Ry. Using the Fourier transform 

SiLk;_U) 

(3/2nLl)3/2exp{ -- (3R2/2Ll)}  

x exp{ - l/6[q21si + qZ(s i - st) + q 2 ( L -  st) } (6) 

Integration over Ri, R t produces some 6-functions 
6 ( - k + q j - q . 2 ) ,  6 ( + k + q . 2 - ~ )  and final integra- 
tion over one remaining q gives 

So(k;R ) = exp{ - k2 Ll~(( ls i -  s t l / L ) -  ([si- sjl/L)2)}e ik-(Isi-'jl/L)g- 
(7) 

We now have to integrate over the distribution of the end- 
to-end distance R, W;~(R) and this again depends on the 
model used. All the classical models consider Gaussian 
non-interacting chains, so that equation (7) always holds. 
The Kuhn-Flory  model assumes 

W~'(R) = W'(U I_R) (8) 

2 k = k 2 k / k  2 

The E~ and E t terms can be evaluated, or replaced by 
~ds~ and ~dsj respectively which gives analytical functions, 
the details of which are not given here. A typical shape is 
given in Figure 1, as a Kratky representation. 

The James and Guth/Deam and Edwards z'4 model 
assumes isotropic fluctuations of the crosslinks (of given 
functionality 4~) around the affinely deformed position (0t 
is the cartesian coordinate along a principle axis) 

R ~ = / ~ + A / ~  (12) 

so that 

wffR_)= w~(R_)w'~(ag_) (13) 

with an affine dependence for 

w~(R) = (3(1 - 2/qb)/2nLl)3/2I-I,(1/2=) '/2 

x exp{ - ((312L1)(1 - 2/q~),~_~P~/2~)} (13a) 

but no deformation dependence for 

wa(AR) = (3(2/(a)/2~Ll)3/2exp{ - ((3/2LI)(2/dp)~,,AR~)} 
(13b) 

Equation (7) becomes 

S~t(k ) = exp{ - ~_~k 2 (Ll/6)( ([s , -  s y L ) - (Isl- s y L )2) } 

x exp{ i~'_.~k=([sl- s y L ) R , } e x p {  i,~_.~k=(lsi- s t l /L)Al~ 
(14) 

and we integrate as in equation (9b) but with the two 
variables R and AR. Because the two distributions are 
Gaussian, both give a k 2 term, and we obtain an 
expression equivalent to equation (11) with 22 replaced by 

where W 1 is the isotropic probability of the end-to-end 
distances, and ,2-1 the inverse of the deformation tensor, 

being the deformation matrix (e.g. 22 ). Then 
23 

Sit(k ) - q(k.y R)W;'(_R)d3R (9) 

2 *2 =),2(1 - 2/~b) + 2/4 

as given in ref. 16. 
The form factor of a labelled path, Sp(k), involves 

couples of monomers (id) belonging to different meshes 
along the path 

fi'-fj=~ri--R~a+R~a--Rb+R~b--~rj (15) 
( ,  

= JSii(ksR)W 1 (2-1R)d3R (9a) 

or S¢i(k) = ;Si j (k~.~R)W'  (R)d3R (9b) 

i 

with WI(R)-- (3/2~zLl)3/2exp{ - (3R2/2Ll)} (10a) 

W;.(R) = (3/22zLl)3/2H~(1/2,) 1/2exp _ ( (3 /2L l )~ ,R2 /2  2) 

(10b) 

equation (7) combined with equation (9) gives 

W(k) ~" = Z i Z f l  o(k)= y ' ,~Fxp{ - k 2 L l / 6 [ ( N -  stl /L ) 

- (Isl-st l /L)2(2~ - 1)]} (11) 

where R, ,R  b are the positions of the crosslinks. In the 
Kuhn-Flory model, the segments joining two consecutive 
crosslinks behave as the steplength of a random walk. The 
calculation, then simple, is given in ref. 5. If now, as in 
James and Guth, the crosslinks are fluctuating, two such 
segments are no longer independent, and a proper 
calculation is not available. Warner and Edwards 7 have 
worked out the form factor of a simple chain crosslinked 
on itself, which is the Deam and Edwards model 4. Here 
any monomer is likely to be one of the Nx crosslinks, and 
one averages over the all possible configurations. The 
effect of such a crosslink constraint is modeled, in the 
variational way of Feynman, by an harmonic potential 
acting on each monomer around a mean value, affine to 
the macroscopic deformation. The variational principle 
gives an expression for the size of the well, (co/)- 1, such as 
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og=NJLl .  Warner and Edwards calculated the form 
factor of such a chain. Here we can make two remarks: 
firstly, their calculation is only approximate, an exact 
expression being available (see Note 1 before References 
section). Secondly, the usual labelled path is not as 
crosslinked on itself as the Deam-Edwards chain. The 
difference becomes clear for a small number of meshes; 
e.g., for Nx=2,  a chain twice crosslinked on itself is 
different from an endlinked chain. The expression of 
Warner and Edwards for N~ = 2 is the same as equation 
(11) combined with equation (15) at small ( i - j ) /L ,  i.e. at 
large k only, in spite of the affirmations of the authors. The 
nonapproximate mathematical expression gives, in 
particular, a 2-dependence of the radius of gyration 
drastically reduced compared with the James and Guth 
value. 

Typical results for Sv(k ) ar e given in Figure 1. For S,,(k) 
the behaviour at large k is the same. A modification on 
S,,(k) will have a corresponding effect on Sp(k). Simply, at 
small k, the large size of the labelled path allows us to 
connect the completely affine behaviour at large 
distances 5'6 (S~(k)=S~(2k)). In this paper we will only 
detail the behaviour of Sr,(k). 

THE FLORY-ERMAN MODEL 

Inasmuch as the calculations are developed here, they can 
be extended to this more recent model, which takes into 
account the interactions between chains via the 
entanglement concept. The Flory method of handling this 
latter concept in rubber is to ascribe to the interactions 
only the role of reducing the freedom of the actual 
crosslinks, not to act as new crosslinks. If one starts from 
the James and Guth model; for 2 close to 1, the freedom of 
fluctuations is much decreased by the entanglements, so 
that the rubber behaves closely to the affine function 
model. When 2 increases, one may remark that there is 
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Figure 1 Kratky representation of the form factor of a labelled path of 
polystyrene (M=2.6×I06)  with a deformation ratio of 2=4.6 in 
perpendicular direction. A, isotropic; B, deswelling experiment 
Mmc~h = 35 000 (ref. 5); C, uniaxial stretching experiment 
Mraesh=30000-50000 (ref. 6); D, James and Guth theory 
(M=~h = 50 000); E, Kuhn and Flory theory (Mmesh = 35 000) 

more freedom for the entanglements, and the real network 
behaves more closely to the James and Guth model (see 
also ref. 16). 

The end-to-end distance of a given chain position of a 
given junction i must, at rest, obey both: 

(i) the phantom constraint 

Ri(t) =/~ph i "{- ARph i(t) 

(R+AR in ref. 8) (16) 

(ii) an entanglement constraint, which is to fluctuate 
around an entanglement centre of actual R 

gi( t )  = fftent i"~ Agent i(t) 

(/~,t i=/~+g,  Agenti=As in ref. 8) (17) 

The distribution over time of Agphi(t) is explained by 
James and Guth, i.e. Gaussian of inverse variance p; Flory 
assumes the distribution, over time, of Agen t ~(t) to be 
Gaussian as well, of inverse variance tro. There is also a 
probability distribution for Rent i -R i ,  over all i; for the 
combination of fluctuations for Rent i -  Ri and Agent ~ to 
agree with the ARph i distribution, it must be Gaussian, of 
variance r/o, with 

1/r/o = 1/p + 1/a o (18) 

The set of the three can also be represented by a real centre 
(entanglement plus phantom) Rreal i 

/~real i - / ~ i  : O'0/(P "~ O'0)(/~nt i - -  Ri)  (19) 

(Rr~aai=R+AR, A R ~ I i = A R  in ref. 8) 

with a Gaussian fluctuation of inverse variance 0 obeying 

1/0 = ao/(p + ao)l/r/o (20) 

plus a time fluctuation, ARreal i, of inverse variance p + a o. 
If one now deforms the system, r/o and a o are assumed to 
be affinely affected. With cartesian coordinates a along the 
principal axis, l/r/= = l/r/022, 1/a, = 1/ao 22. Equations (19) 
and (20) still apply with ao,r/o being replaced by a=,r/=. With 
Ri(2) being replaced by equation (17), and by handling the 
different Gaussian distributions, it is again possible to 
write 

(21) 

where the distribution over i of Rph~ is the same as 
suggested by James and Guth, and the distribution over i 
and t of AR~-torr_n~ma n i is also Gaussian with variance 

1/p**= = 1/o~ + 1/(p + ,7=) 

which depends on p and a. Introducing the parameter 
x = a/p, one finally gets 

1//9"= = 1/p[K2(2~ - 1)/(2 2 + ~c) 2] 

Inasmuch as all the distributions are Gaussian, we can 
use the treatment given in equations (12), (13) and (14). 
This again gives a formula of the type in equation (11) with 
2 2 now replaced by a third value 2 *.5, such that the form 
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factor is now" 

id ~ L 

f 2~ ,  2 2/tc20.2-- 1) 

The Flory-Erman model gives, as expected, a form 
factor intermediate between the Kuhn-Flory  x = ~  
(affine junction) and the James and Guth (x = 0) models, 
which is closer to the latter inasmuch as the deformation 
increases. 

SLIPLINK T R E A T M E N T  OF THE 
E N T A N G L E M E N T S  

This model also treats the topological interactions 
between non-phantom chains, also called entanglements, 
but these act now as additional crosslinks. The modulus is 
then related to the action of the N~ crosslinks plus the 
action of the N~ entanglements. Ball et al. 9 have included 
the treatment of entanglements in the frame of the Deam 
and Edwards formulation of the rubber elasticity ('replica 
theory'). The entanglements are modelled as sliplinks: a 
piece of chain ended by two crosslinks can slip inside a 
small ring, which links two entangled chains. Ball et al. 
worked out the first order approximation in which the 
Edwards harmonic, which adequately models the 
crosslinks, does depend only on the crosslinks (see Note 2 
before Reference section), but where the free energy 
depends on both kinds of links 

{Nc=~ 1 3 F=Fe+F,=I/2kaT 2Z~+N~[2~(l+q)/(l+q;t~) 
"= i =  1 

+ log(1 + r/2~)]} (23) 

where r/ is the average of the slippage and is found 
theoretically to be r/---0.2 (ref. 9) and experimentally 
r / -0 .4  (ref. 10). 

If2 departs from 1 the modulus then decreases as found 
experimentally. The theoretical reasoning behind 
equation (23) is that when the material is stretched, there 
is, after averaging over all the directions, more freedom for 
the chain to slip inside the sliplinks. The deformation 
weakens the effect of the entanglements as in the Flory-- 
Erman model. 

To derive the form factor, one could then apply the 
method described in ref. 7 to calculate the form factor S(k) 
in the case of slip links (see Note 2). Instead of calculating 
the form factor by the replica theory one can attempt to do 
it by more elementary methods such as that done for the 
free energy ~1. The idea is to give a simple distribution 
function which adequately models the result (equation 
(23). In ref. I 1 it was found that 

+ e  

(" da( 3 ~ ( 3R 2 
G(R,L)= ~~ J -~t2rtl(L+a))exp~ 21(-L-+aiJ 

-~ (24) 

fits the replica results (equation 16) quite well in the small 
deformation regime, a is the slip variable and e the amount 

of slips (see Figure 2). We recall the outline of the 
calculation briefly (see Appendix A), in order to make the 
same approximations for the form factor later. The free 
energy of the rubber is given by 4 

fd3R log(G(2.R,L))G(R,L) (25) 

where 2 is the deformation tensor. Hence, in this 
representaUon the crosslinks are fixed and not allowed to 
fluctuate. Adding a fluctuation as in the James and Guth 
model is not the major problem. Using for G(R,L) 
expression (24) and expanding G(R,L) to the order (a/L) 2, 
averaging on a and on R we indeed find for the free 
energy, expression (24) (see appendix A for details). 

To obtain the form factor, following equation (4), we 
have to perform the average on G(R,L), which is now 
given by equation (24). We now end up with 

£ g 

sz(k,= f da/(2 ) f db/(2 )exp -(k21/6)[[sl-s,[ 
- -E --I: 

- (Isl- s~12/(L + a)) (22((L + b)l(L + a ) ) -  1)]} (26) 

where the second integral (~db) comes from the average 
procedure < > (see Appendix B for details). Performing 
the a and b integrals on the same lines, as was done in the 
free energy case, we achieve the final result 

SZ(k ) = ~exp{ -~k2lsi- s j[ 

Q(~2 _ 1) 
(½Q24 +½(222 - 1)Q - (322 

1 -I- r/). ~2mi -1)}  

with 
Q= ~k2 lS'LSj[2 

If r/---,0 (so that the slip link acts as a crosslink with the 
amount of slips being zero) the classical expression is 
recovered. If 2---q, we are left with the isotropic form 
factor. We obtain an additional k 2 dependence in the 
argument of the exponential. We note that equation (22) 
assumes E(22 - 1) is small, so 2 is close to 1. In practice it 
may be more accurate to compute directly from equation 
(21). 

FINITE EXTENSIBILITY 

So far we have only considered the small deformation 
regime. In this section we calculate the influence of the 

\ 

._."-L ," J ( \  

Figure 2 Schematic representation of the slip link model. The 
crosslinked chain with length L is entangled by other chains visualized 
by the rings. The ring can slide along the chain up to a maximum value e 
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finite extensibility on the neutron scattering data. 
From considering the force it is known that for 
deformation ratios greater than 4-5 the extension limit 
becomes important (see ref. 11) and the distribution 
function is no longer Gaussian. In principle we have to 
consider two regimes (a) the case where no entanglements 
are present, (b) the fully entangled case ~2. 

As we have shown in ref. 12 the increase of the force is 
more drastic if the rubber is crosslinked in the melt and a 
lot of trapped entanglements are present. Therefore, we 
restrict ourselves to the latter case and we use the concept 
of the primitive path ~a as in the considerations 
concerning the free energy TM~ 2. If we use the fact that the 
real free part of the chain is given by the difference between 
the real contour of the polymer and the primitive path, the 
distribution function can be approximated by 

G(R,L, Lpp)) = (3/21tl(L- Lpp))3/2exp - (3R2/21(L-/-'vp) ) 
(28) 

where Lpp is the length of the primitive path. This primitive 
path itself is a random walk with step length a >  l (l is the 
step length o f  the polymer) and has the same end-to-end 
distance as the polymer chain. We find then 

L/I_~p = a/l = 1/0t (29) 

If we deform the rubber the primitive path will be 
deformed so that 

// 3 "k 1/2 

(30) 

We can use these relations to calculate the form factor, 
where we are left by the same formalism as in the section 
dealing with form factors for classical models, if we replace 
L by L - 4 p  and keeping in mind that the primitive path 
will be deformed according to equation (30). The result of 
the form factor is then (see Appendix C) 

S~(k)= ~exp{ -  ~k2lsi- sj[ 

l 2 ]Si--SJ [2 (~2_ (1 -~)  

where ~ = l/a and j2 = 1/3E2~. The limits ~--*0 and 2--,1 
again give the classical cases. 

ORIENTATIONAL EFFECT 

Some measurements of the orientation (e.g. quantity 
(P2(0)) =(3cos20 - 1/2)),0 being the angle between the 
monomer and the axis of the uniaxial deformation), have 
shown evidence of orientational interaction between the 
chains. In some polarization fluorescence experiments ~4 
P2 is twice as large in the dry rubber than in fully swollen 
rubber for the same deformation. The same technique has 
been applied to a melt of small labelled chains solved in a 
matrix of large chains. During deformation, if the typical 
time of the deformation for these large chains is smaller 
than the terminal time of the mixture but greater than that 
for the short chains, which should remain isotropic, these 
latter chains, however, show a deformation15% The 
situation is the same for dangling chains in a deformed 
rubber 15b. For free chains in a network under static 

Vilgis and F. Bou~ 

deformation, deuterium magnetic resonance shows that 
P2 is of the same order as for the end-linked chains ~ 
These interactions can be simulated in a mean field way by 
an orientational field as in nematic materials (see ref. 12 
and refs. therein). An interesting point is that it gives a 
decrease in the elastic force around 2 = 1 in a way that is 
close to the published data ~2'~4. Following ref. 12 we 
propose here to derive the form factor of a chain, in which 
the monomers are submitted to an orientational field, 
meanwhile it has still a fixed end-to-end distance. Thus we 
consider an anisotropic random walk of step #,l in the 
direction ~, joining two points distant from R. The Green 
function is 

G~J(R) = I ' I , ( 3 / 2 n l i - j l / ~ a 2 ) e x p {  - (3/2Ll~,,R2/It2)} (32) 

For such a random walk, the mean square of cos 0 would 
be: 

( C O S 2 0 )  2 2 2 =/~x/(Px + 2#y) (33) 

and we assume t2'~4 

((3c0s20-1)/2)( 2 2 2 2 , 2  = b,x + # , ] / [ m  + 2 ~ y ] ) = h  - 1/;  
(34) 

where 2 is the macroscopic deformation. 
If we now look at an endlinked chain we can use the 

classical expression of W~(R) for the distribution of the 
crosslinks and it can be verified that the result is obtained 
only by replacing k 2 by 2 2 k~/t,, which gives 

Sa(k) = ~.,~iexp { - Z=kZ#Z(Ll/6)((ls,-- syL) 
- (Is,- syL) 2 (22 - 1))} 

(35) 

At small k both # and 2 will combine in a multiplicative 
way for the anisotropy. At large k, S(k) will return to unity 
for the uncrosslinked chain, but it will be monomer 
oriented, i.e. S(k/direction ~),,~ 1/k2/~. In a Kratky plot, 
k2S(k) will appear as a plateau of ordinate 1//~ 2 and in the 
perpendicular direction for example, the plateau will be 
higher. The question now is what will be the expected 
value of/1=: if we refer to the experimental values from 
quoted experiments, P2 is rather weak, ~ 10-2(22 - 1/2). 
For 2 ~ 1.4 this would give I/k/2 '~ 1 -b 10 -2 .  For 2 =4.5, 
1/# 2 ~ 1.1. Thus, except for strong deformations, the effect 
would be very hard to see by SANS, for which the 
uncertainty is of order of 5 ~o for an already reasonably 
accurate experiment. For example, an experiment TM has 
been done parallel to the d.m.r, measurement17b; S(k) is 
measured for a small PDMS free chain solved in a 
deformed network: anisotropy is not apparent, the largest 
value of 2 being 1.35. Meanwhile, d.m.r, displays a neat 
orientation. One would then extrapolate a similar effect 
for the case of an end-linked chain, i.e. # very close to 
unity. In that case, for the small k regime, the relevant 
quantity is 2=#=, quite close to 2, and it is slightly more 
anisotropic. This is not in agreement with the SANS 
results, for which the form factor is less strongly 
anisotropic than predicted. If2 is relatively large, the effect 
would be sufficiently strong to explain the large 
an~sotrOpy observed at high k values. However, in this 
case the limited extensibility must also be considered. 
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QUALITATIVE BEHAVIOUR AND 
EXPERIMENTAL SITUATION 

The experimental situation is shown in Figure 1 for two 
representative cases: (a) deformation by deswelling a 
network crosslinked in semidilute theta solution; (b) by 
stretching a network crosslinked in a very concentrated 
solution (80%). The form factors are from labelled paths, 
while the calculations are for a labelled mesh, but keeping 
that in mind, some comparison is possible. Two 
important features appear: at low k (large distances) the 
deformation is lower than from both classical models 
(Kuhn-Flory and Deam and Edwards); at large k, the 
anisotropy is larger. The deformation ratios are large 
(1 .2<2< 5) because SANS has been up until now not 
very sensitive to very small deformations. 

First, the Flory-Erman model is shown to be unable 
to cope with this type of behaviour; with expression (21) 
clearly falling between the results for both classical models 
(~c =0, ~---~). The Flory-Erman model will then have the 
same discrepancies, more deformed than the data at low k, 
less at large k. The conclusion is valid also for the form 
that a labelled path would give, as this one would still lie 
between those for the two classical models. 

Secondly, the sliplink model could be closer to 
experiments for entangled systems. To allow a 
comparison with theoretical classical form factors, the 
average mesh molecular weight is evaluated from the 
modulus at 2=  1 (G"~Ns+Nc), which accounts for the 
entanglements. For the large deformations used in the 
experiments, the sliplink model reduces significantly their 
effect on the deformation of the chain. Then the 
anisotropy at small k will be reduced compared with the 
classical expressions. As k becomes larger and larger, the 
couples of monomers (ij) producing scattering 
correspond to smaller and smaller (sl-sj) values. In 
equation (27), Q is then smaller, so large k behaviour 
would be less sensitive to the reduction of the anisotropy. 

If large deformations are used, it is useful to understand 
the role of the limited extensibility. Equation (31) shows 
that the contribution of the term Jsi-sfi2/L is increased 
not only through an apparent 2 and this will result in a 
larger anisotropy at large k. For a labelled path, this will 
not be important for large distances: above the scale of 
one mesh, no effect is predicted by the model, the small k 
behaviour will then not differ from classical models. 

Finally, the orientational effect has been estimated at 
the end of the previous section from experimental data 
and we have seen that it would be apparent only for 2>  3. 

Clearly, the comparisons must be advanced further, in 
particular by using graphic comparison of the plots for 
different models, and calculating the labelled path form 
factor, for information over a much wider range. This is 
also linked to the progress of systematic experiments on 
model rubbers. 

local alignment; the excluded volume is not studied, thus 
the theories discussed here do not apply to rubbers 
swollen in a good solvent. We also give indications of the 
behaviour of the form factor of a labelled path of many 
meshes through the network. We comment, qualitatively, 
on how the different theories would transform the form 
factor of the classical models bringing them closer into 
line with the current neutron scattering data on deformed 
rubbers. In all cases we still retain the classical hypothesis 
of affine deformation of the mean positions of the 
crosslinks. The Flory-Erman model, because it lies 
between the two classical models and assumes Gaussian 
fluctuations, allows simple calculation. The hypothesis of 
an orientational field at the level of the monomer leads to 
a simple expression, namely where k is replaced by/~.k (/~ 
being the orientational matrix). The influence of the 
entanglements, in a dense medium, on the extensibility 
can also be calculated in a simplistic fashion. The sliplink 
model is derived through the replica calculation for the 
free energy: the first order approximation has no 
corresponding effect on the form factor and any higher 
orders are too complex. Thus we returned to the genuine 
expression and considered a chain with the two ends 
attached to slipping crosslinks. An approximate 
expression may be used for 2 close to 1, with the results 
being better computed. 

Comparing with current data, one may first aim to 
explain the high deformation observed at large k. The 
Flory-Erman model does not give any clue, inasmuch as 
only the ends of the chain, the crosslinks, are affected by 
the entanglements. The orientational hypothesis does 
exhibit effects; however, using available data from the 
orientation measurements, these effects would be visible 
only at large k. In that case, the limited extensibility also 
gives a higher anisotropy. 

If one is more interested by the small k behaviour, in the 
range of universal laws for most of the polymer physics, 
the orientational and limited extensibility seem weakly 
relevant. The Flory-Erman model, because it interpolates 
between the two classical models which both predict too 
high an anisotropy at small k, does not produce a possible 
explanation. The sliplink model is relevant because all the 
soft crosslinks due to entanglements are weakened at 
large 2. This could be effective for highly entangled 
systems. It would be of interest to observe by SANS both 
very entangled and weakly entangled rubbers, depending 
on the preparation. It is still valuable to question the 
hypothesis of affine deformation of the mean positions of 
the crosslinks, if it seems sensible for phantom chains with 
a connectivity are likely to be accounted by a mean field 
theory, and clearly it could be modified by the 
'nonphantomness', and also for some special 
connectivities which appear in the gelation theories 18. 

SUMMARY 

We have given the expression of the form factor of a 
labelled mesh in a network, starting from the classical 
models of Kuhn-Flory,  James-Guth, and adding some 
interactions between chains. For that we have used 
theories developed in the literature in order to explain the 
mechanical static properties, mainly the 2 dependence of 
the modulus. The interactions are either entanglements or 
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NOTES 

Note 1 
Warner and Edwards 7 have calculated 

f 6X( s ) exp{ -  fds{[OX(s)/Os]2 +lo92(X(s)) 2} 

x exp[iyk(X(s~)- X(sfl)] (Naa) 

for which they give 

exp{ -, /2k2[ 1/2o9(1 -exp(oglls~-sjI/3)]} (Nlb) 

For (o)lls~-sy3)~ 1, and N~=2  (og=Nx/Ll=2/Ll) the 
expansion of exp - (og l l s i - sy3 )  leads to 

e x p -  k2(22 - l ) l /2 (s i -  sfl2/L (Nlc) 

which corresponds to the (s~- sj)2/L term in the exponent 
of equation (11) with ,~2_..,~.2 _ (~2+  1)/2 (equation (24) 
with 4~ =4), i.e. Pearson's result for a single endlinked 
chain. 

exp-- y2k2½ 3[(coth(og/Isi - sy3)  - 1/(ogllsi- s~l/3)) 
0N1d) 
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It follows then that the expression for the radius of 
gyration is found, 1/4 22+ 3/4 in the James and Guth 
model for ~b = 4, i.e. a weak 2 dependence. 

APPENDIX A 

The free energy of  the slip link 
Here we demonstrate that the free energy given by the 

replica calculation 

Note 2 
Technical difficulties in use of  replica theory for the form 

factor. Ball et al. have modelled the effect of both 
crosslinks and sliplinks as in the work by Deam and 
Edwards, by an harmonic well of inverse width ogl. The 
free energy is calculated as a function of m,l,e,L and then 
minimized with respect to o9. This gives for x = exol/3 the 
implicit equation 

x~ = 2e(Ns + N~)/L{  1 - (Ns/(Ns + N~))21(dq(x~)/dx~[2 - 21 

+22q(x,)]/(1 + 21t/(x=) 2} (N2a) 

+q)  ) 
Mog(l + ~/22)~ (AI) 

can be modelled by the expression 

f 3R 2 ) 

f da exp~ 21(--~a)~ 
G(R,L)= ~e ~ - - - - ~  (A2) 

_~ ~ - l ( L  +a)) 

where a is the slip variable and e is the amplitude of the 
slippage. The free energy in the deformed network is given 
by 

with r/(x) = x -  2 (X  - -  X 2 "4- 2/3 x a - e - Xsinhx). The authors 
just take x = 2e(Ns + Nc)/L, thus o9B = 6(Ns + No)ILl. If e is 
estimated as the freedom of an average number Ns/2Nc of 
entanglements confined on each mesh between the end 
crosslinks, x =  1, thus q =0.2. Reporting o9B in the free 
energy one finds expression (23), which contains extra 
terms depending on 2, from the first order perturbation 
expansion. However, for the form factor, Warner and 
Edwards just represent the system with the harmonic well 
co which here does not depend on 2. We have solved 
graphically equation (N2a) and found a variation co(2), 
insignificant for N~ ~ No, and within a factor of 2.5 for 
N~>> Arc. x departs from its value at 2 =  1 (e.g. x =  1) to 
saturate at 2 > 5  (e.g. x=2.5). This development now 
complicates the free energy, and r/, and may be outside the 
boundaries for the validity of the replica method as 
applied in that case. 

kBT = d3R log G(2..R,L)G(R,L) (A3) 

we then write 
3 

~da/  3 \a!2 (3 ,=Z 22R2 
• - - exp G(~'-R)= J~2~e 2M(L+a))  ~21(L+a)}  (A4) 

where the i are the cartesian indices. We rewrite this 
expression as 

g 

da 
21L(13E22R2+ a/L) ~ l ° g ( l + L ) l  

- e  

(AS) 
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and expand in (a/L) to the second order in the exponent. 

f 3 'X 3!2 da 
G(~'R)~-t~ ) f ~ x p [ -  2 ~ / , Z i  3 ~ ' 2  2R i 

×(,o 
(A6) 

After collecting terms we expand each of the exponentials 
again to order (a/L) 2 and find 

e 

.,, 3 3/2 3 42 2 da 3 a 
G(2"R-)-(~nlL) exp(-~lL~Zigi)f d~e l+~l~L ~) 

- - g  

x Z22R2+ 5 2, R, 
i 21L 

[-- 2R2\/a\ 2 3/a\ 3/ 3 \_  2R2[a"12 
')tz) 'tz) 

(A7) 

~'da W We then perform the average of the slippage by j ~-. e 
find 

- e  

we see that both equations are equivalent, to the order 
(2i-1) 2, with (a/L) 2 =~. 

APPENDIX B 

Calculation of the slip link form factor 
If we start from equation (1) to obtain the form factor. 

We therefore calculate 

f dR,dRjG(~R o,Ri,si)G(Ri,Rj,s j - s,) 

G(R~,~Rz+ a,L+ a - s j ) e x p [ i k ( R i -  R fi] 
G(Rj2=Rz._~,L+ a -- sl) 

(B1) 

by the use of the distribution functions given in equation 
(18). We use equation (7), which leads, after some algebra, 
to 

S(k,ARoz.J=~exp[-~k~lsi-s,l(1 ,sl-s,[.'~] 
" i3 L L + a / J  

. , [  3 "~3/2 / /  3 - - , 2  2 \ f  [a'X2[-15 1[ 3 "~2 

2 5 3 2R 2 

using the abbreviation 

f da~a'] 2 (a'~ 2 

- - g  

We now use equation (A3); we expand the logarithmic 
term by the use of 

loge-a(1 +ctB)~ - A +~tB (A9) 

To calculate the average, we approximate the weight 
distribution G(R,L) to its value for e = 0. This is valid since 
we work to order (a/L) 2 only. It gives for the free energy: 

F l~j .  2 l / a \ 2  ~_{ 10~22 + 3~22 +2~2222 t  kaT~-~ i - 2 ~ ) 1 5 -  
i i# j  .~ 

(A10) 

The question now is: does this fit the replica expression 
(A1)? To check this we expand equation (A1) to the order 
~/and find 

1 /~2 F ~ {  i +2r/2~-q 24) 
kBT (A 11) 

Rearranging equation (A10) to 

a 2 3 a 2 --1)2 ~ 
) 
(Ale) 

where ct is the cartesian index. 
For the final form factor we have to average this 

expression (B2) on the equilibrium distribution function 
and average on the slippage, so that 

3 S(k,R)= fS(k,ARo,L+o)2ra(L+b)exp( 3 R2 'L+a~ 2l(L+b)// (B3) 

which gives 

S(k,,X)-_Fexo(_Ik ls,_s l  dafdb [l,21s,-s ? 

L,k=ls~-sjl 
x exp (L+a)2 (L+b) (B4) 

o r  

S(k=,2,) = Zexp ( 
i,j i g 

) do db 
- ~  k21s'-s~l -~e J-~e 

- e  - e  

xexp(  lk2[si-sj[2122L+b 1~ 
L+a t J/ (BS) 

we see that for e--+0 this contains the classical expression. 
If we now do the same approximations as in the free 

energy calculation, we should get the equivalent form 
factor. We consider the integrals 

e 

I = J ~ - e J ~ e  xp (l+a/L) x -~+a/L) 1 

(B6) 
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with The final result is given by 

1 / 2 
-6k I s i -  Q=-~ sjl 2 S(k,2)-~exp[ 1 2 ij t_ - ~k Is,- sjl 

If we expand the exponent to orders (a/L) 2 and (b/L) 2 we 
find for the integrand 

a a 2 2 e x p [ _ Q ( l _ ~ + ( ~ ) ) { 2 ( 1  a ['a'~2 b ab'~ 

If we drop terms of order (ab), or any higher orders than 2, 
we find the integrand to be 

exp[- Q( (22- I)-(~-)(222- I)+ (~)2 (322- I) +~22}] 

We then expand each of the exponentials to order (a/L) 2, 
(b/L) 2 and find 

_ !2(2 2 - 1) .q 
1 + t/{[½Q2" +½(222 - 1)O- (322 - 1)]/(42 - 1)} J 

(B10) 

APPENDIX C 

Finite extensibility form factor 
For this calculation we can directly use the preliminary 

calculations from the second section of the paper as well 
as equation (B2) from Appendix B. We recall equation (9): 

xexp ikRoL L " (C1) 

e_ O(;,_ i){ I _ Lb 22Q + l fb'~224Q2 _( a?~2(3~2, i )Q 
2 \ L :  \ L /  

if we perform the integrations ~da ~db asg~ven in equation 
(B6) we see again that the linear terms give no 

fb 2 db 
contribution. Defining we get 

I-~ e - Q( ' # - ' ) {  1 + Qr/(½Q24 + ½(242 - 1)-  ( 3 4 2  - -  I))}(B7) 

We then approximate I by the exponential 

I ~ e-Q(~-l)exp{ + Qt/(½2' +½(242-1)- (322-1))}  
(B8) 

Since the dominant terms in equation (B5) come from 
exp( -Q/ (L  +a))  we rearrange equation (B8) to give 

l ~ e x p  . [½Q24 + ½ ( ~ -  i~Q_ (322 _ 1 ) 
1 ~-t/~ ( 4  2 - 1) 

We use the expression (9b). In S.(k;2R),  L must be 
replaced by L-Lvp, with the deformed value for Lpp. 
Equation (CI) then becomes 

I 2 S(k,2,RoL)=~exp[_~ k js,_sil( I lsi-sjl "~l 

F. . Is,-sjl-I x expl_,k2,  _ l (C2) 

where ~ and J are defined in the section dealing with 'Finite 
extensibility'. If we perofrm the average 

S(k,2) =<S(k,2RoL)> 

by the use of the distribution function (equation (28)) we 
get the final result 

S 
. . . .  ~ I- 1,2, , 1 , 2 P i - s j l  2 

which reduces for ~---~0 to the classical limit. 

(C4) 
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